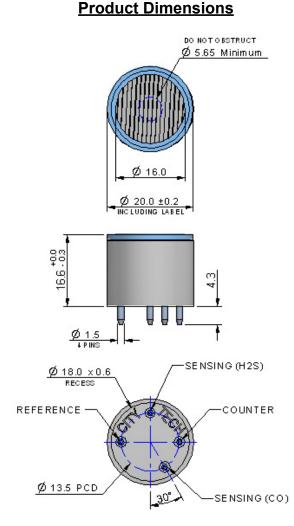
Sweek.com

4COSH CiTiceL[®]

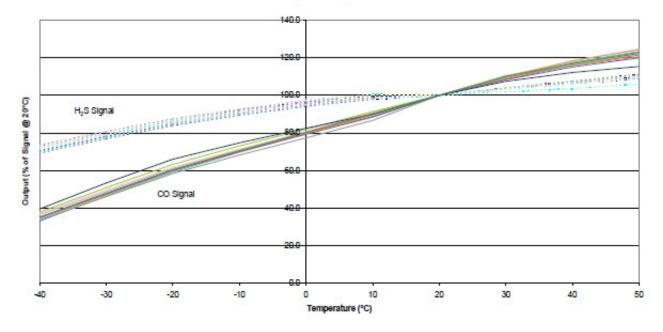

(Four electrode dual gas sensor)

Performance Characteristics		
Nominal Range	For CO: 0-500 ppm For H ₂ S: 0-200 ppm	
Maximum Overload	For CO: 1500 ppm For H_2S : 500 ppm	
Expected Operating Life	Three years in air	
Output Signal	For CO: 80 \pm 30 nA / ppm For H ₂ S: 775 \pm 275 nA / ppm	
Resolution	For CO: ±1.0 ppm For H ₂ S: ±0.5 ppm	
Temperature Range	-20°C to +50°C	
Pressure Range	Atmospheric ± 10%	
T ₉₀ Response Time	For CO: \leq 35 seconds For H ₂ S: \leq 35 seconds	
Relative Humidity Range	15 to 90% non-condensing	
Typical Baseline Range (ppm equiv.)	For CO: -2 to +3 ppm For H ₂ S: -0.4 to +0.4 ppm	
Long Term Output Drift	<5% signal loss/year	
Recommended Load Resistor	10 Ω	
Bias Voltage	Not required	
Repeatability	For CO: ≤3% of signal For H ₂ S: ≤2% of signal	
Output Linearity	Linear	

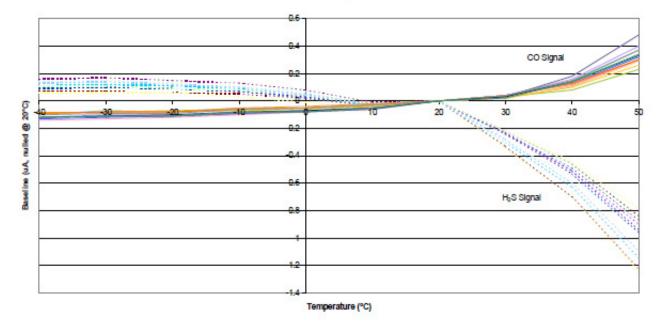
N.B. All performance data is based on conditions at 20°C, 50%RH, and 1013 mBar

Physical Characteristics

Weight	5g approx.
Position Sensitivity	None
Storage Life	Six months in CTL container
Recommended Storage Temperature	0-20°C
Warranty Period	12 months from date of despatch



All dimensions in mm All tolerances ± 0.15 mm unless otherwise stated.


Dimensions are for indication purposes only. For further details, contact City Technology Ltd.

IMPORTANT NOTE: Connection should be made via PCB sockets only. Soldering to the pins will seriously damage your sensor.

Cross-sensitivity Data

CiTiceLs may exhibit a response to certain gases in a sample other than the target gas. 4COSH CiTiceLs have been tested with a number of commonly cross-interfering gases and the results are given below. The table shows the typical response to be expected from a sensor when exposed to a given test gas concentration (relevant to safety, e.g. TLV levels):

Test gas	Test gas conc. (ppm)	ppm on H ₂ S channel	ppm on CO channel
Carbon Monoxide, CO	300	<6	300
Hydrogen Sulfide, H ₂ S	15	16	0 to 6
Hydrogen	100	0.03	~ 20
Nitric Oxide, NO	35	<1	<0.1
Nitrogen Dioxide, NO ₂	5	~ -1	<0.1
Chlorine, Cl ₂	1	0	0
Sulfur Dioxide, SO ₂	5	<1	0

SAFETY NOTE

This sensor is designed to be used in safety critical applications. To ensure that the sensor and/or instrument in which it is used, are operating properly, it is a requirement that the function of the device is confirmed by exposure to target gas (bump check) before each use of the sensor and/or instrument. Failure to carry out such tests may jeopardize the safety of people and property.

Every effort has been made to ensure the accuracy of this document at the time of printing. In accordance with the company's policy of continued product improvement City Technology Limited reserves the right to make product changes without notice. No liability is accepted for any consequential losses, injury or damage resulting from the use of this document or from any omissions or errors herein. The data is given for guidance only. It does not constitute a specification or an offer for sale. The products are always subject to a programme of improvement and testing which may result in some changes in the characteristics quoted. As the products may be used by the client in circumstances beyond the knowledge and control of City Technology Limited, we cannot give any warranty as to the relevance of these particulars to an application. It is the clients' responsibility to carry out the necessary tests to determine the usefulness of the products and to ensure their safety of operation in a particular application.

Performance characteristics on this data sheet outline the performance of newly supplied sensors. Output signal can drift below the lower limit over time.